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a b s t r a c t

This paper focuses on the design of both periodic time- and event-triggered control laws
of switched affine systems using a hybrid dynamical system approach. The novelties of
this paper rely on the hybrid dynamical representation of this class of systems and on
a free-matrix min-projection control, which relaxes the structure of the usual Lyapunov
matrix-based min-projection control. This contribution also presents an extension of
the usual periodic time-triggered implementation to the event-triggered one, where the
control input updates are permitted only when a particular event is detected. Together
with the definition of an appropriate optimization problem, a stabilization result is
formulated to ensure the uniform global asymptotic stability of an attractor for both
types of controllers, which is a neighborhood of the desired operating point. Finally, the
proposed method is evaluated through a numerical example.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Switched affine systems [1] are encountered in many applications including DC-DC power conversion [2,3], biochemical
etworks [4], aerospace [5] and urban traffic [6]. This class of systems is characterized by the fact that the origin is not
ecessarily a common equilibrium of all operating modes. This usually prevents from the asymptotic stabilization to this
ommon equilibrium. Indeed, the set of operating points are given by a dynamic averaging, obtaining solutions in the
eneralized sense of Krasovskii. Many papers can be found in the literature on controlling continuous-time switched
ffine systems. This is usually achieved thanks to the Lyapunov matrix-based min-projection control strategy [7,8] and
everal contributions succeeded in applying this strategy to the control of DC-DC power converters [9,10] and even
omprising experimental results [11,12]. Moreover, this Lyapunov-based controller was also applied to a more general
lass of nonlinear switched systems [13].
It is worth noting that this control strategy suffers from a major drawback in continuous time. Indeed, it may lead

o arbitrarily fast switching control signals, generating eventually Zeno solutions. Therefore, several contributions aimed
t ensuring a minimum dwell-time solution with an admissible chattering around the operating point. To cite only the
nes focusing on power converters, the authors of [14] imposed a minimum dwell time, thanks to a time regularization.
he solution presented in [3] focused on the specific classical boost converter and [15] does not provide a stability proof.
ikewise, the authors of [16] have provided a solution to the control of switched affine systems that avoids Zeno behavior

∗ Corresponding author at: Universidad de Sevilla, Department of System Engineering and Automatic Control, Avd. de los Descubrimientos s/n,
41092, Seville, Spain.

E-mail address: albea@us.es (C. Albea).
ttps://doi.org/10.1016/j.nahs.2021.101039
751-570X/© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.nahs.2021.101039
http://www.elsevier.com/locate/nahs
http://www.elsevier.com/locate/nahs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nahs.2021.101039&domain=pdf
mailto:albea@us.es
https://doi.org/10.1016/j.nahs.2021.101039


C. Albea and A. Seuret Nonlinear Analysis: Hybrid Systems 41 (2021) 101039

u
o

e
f
a
t
c
d

T
t
e
a
h
i
p

t
a
s
c
o
c
f
a
T
i
n
p
t

a
M
i

n

sing both time- and space-regularization and a hybrid dynamical system formulation. Moreover, extended formulations
f these systems using a nonlinear systems approach have been considered in [17,18].
In many occasions, the control law has to be implemented periodically in a time-triggered method, as it is generally

ncountered in electronics [19,20]. Moreover, this periodic implementation constraint also represents a challenge in other
ields, as in aerospace [21] or in robotic [22,23]. In order to deal with this issue, a solution consisting in the discretization of
continuous-time model gathering the fact that the control law is periodically updated was provided in [24–26]. However,
hese results disregard the trajectories between two sampling instants, preventing to provide a complete analysis of the
ontinuous trajectories of the system. Compared to the continuous-time approach, the discrete one has the advantage to
isregard the problem of Zeno behavior since it inherently includes a dwell time constraint.
Switched affine systems have been considered often in the literature via the hybrid dynamical paradigm given in [27].

he readers may refer to [3,9,28] for instance. The advantages of this framework rely on the possibility to account for
he full continuous/discrete nature of such a class of systems. More especially, it allows to represent in a consistent and
legant manner periodic as well as aperiodic controllers. Hence, this direction can be beneficial for deriving a unified
pproach to cope with the time- and event-triggered switching control laws as for sampled-data systems. Indeed, several
ybrid dynamical models have been considered to capture the particular class of sampled-data systems as explained for
nstance in [27], and have led to many relevant results as detailed in [29]. This represents the main motivation of this
aper, i.e. to enhance a hybrid controller for switched affine systems.
In the present paper, we follow the hybrid dynamical system paradigm provided in [27], generating both a periodic

ime-triggered control and an aperiodic event-triggered control for switched affine systems, without being based on
Lyapunov matrix-based min-projection control strategy. We first provide a hybrid dynamical model of a controlled

witching affine system, whose control input is required to be periodically updated, in the sense that the control input
an be only modified at periodic sampling instants, driving to a periodic time-triggered controller. Then, we formulate an
ptimal control design problem expressed as a set of tractable matrix inequality conditions. The periodic time-triggered
ontrol law presents a simple structure, which is based on a so-called free-matrix based control law and which differs
rom the well-known Lyapunov matrix-based min-projection control [9,25,30] used in this class of systems. This solution
lso provides a compact attractor of small size, which is proven to be Uniformly Globally Asymptotically Stable (UGAS).
his ensures that a given operating point is uniformly globally practically stable. In a second step, the previous model
s extended to derive an aperiodic event-triggered control law, which includes a minimum dwell-time constraint. This
ew hybrid dynamical model allows the controller to keep the same control action while no event are generated after a
rescribed dwell time. A numerical example illustrates our contribution and shows the efficiency of our approach in the
ime- and event-triggered cases.

The paper is organized as follow. The problem formulation is stated in Section 2. The hybrid dynamical model for
time-triggered control is presented in Section 3, proposing a control design, by formulating an optimization problem.
oreover, the extension to an event-triggered control strategy is given in Section 4. In Section 5 some numerical results

llustrates the theoretical results. The paper ends with a conclusion section and draws some perspectives.
Notations: Throughout the paper, N denotes the set of natural numbers, R, the real numbers, R≥0 real positive

umbers, Rn the n-dimensional Euclidean space and Rn×m the set of all real n × m matrices. The set composed by the
first K positive integers, namely {1, 2, . . . , K }, is denoted by K. For any n and m in N, matrices In and 0n,m denote the
identity matrix of Rn×n and the null matrix of Rn×m, respectively. When no confusion is possible, the subscript of these
matrices that precises their dimension will be omitted. For any matrix M of Rn×n, the notation M ≻ 0, (M ≺ 0) means
that M is symmetric positive (negative) definite and det(M) represents its determinant. Finally, we define Λ as the subset
of [0, 1]Card(K) such that an element λ in Λ has its components, λi in [0, 1] for all i ∈ K and verifies

∑
i∈K λi = 1.

2. Problem formulation

2.1. System data

Consider the switched affine system governed by the following dynamics:

ż(t) = Aσ (t)z(t) + Bσ (t),

σ (t) ∈ K, ∀t ≥ 0 (1)

where z(t) ∈ Rn is the system state, and Ai and Bi are matrices of appropriate dimensions, for all i in K. The control
input is the switching signal σ (t) in K. The two following assumptions on the implementation of the control law will be
considered in the sequel:

Assumption 1 (Periodic Time-triggered Control). There exists a sampling period T > 0 and an initial time t0 (without loss
of generality, we will take the convention t0 = 0) such that the switching control input verifies{

σ (t) = σ (tk), ∀t ∈ [tk, tk+1),
tk+1 = tk + T ,

∀k ∈ N. (2)
2
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A
ssumption 2 (Aperiodic Event-triggered Control). There exists a minimum and maximum dwell time 0 < Tm < TM , a
function φ and an initial time t0 = 0, such that the switching control input can be described by{

σ (t) = σ (tk), ∀t ∈ [tk, tk+1),
tk+1 = min

t∈R
{t ∈ [tk + Tm, tk + TM ], φ(ξ ) ≥ 0}, ∀k ∈ N, (3)

where function φ refers to a triggering rule to be defined, generating the events based on the available information, which
is denoted here as ξ .

This paper deals with the design of both periodic time-triggered control law and an aperiodic event-triggered control
law for the control input σ (t), such that the solutions to switched affine system (1) converge globally and asymptotically
to a neighborhood of a desired operating point given by ze ∈ RN . As mentioned in the introduction, this desired operating
point, ze, is not necessarily an equilibrium of one or several modes of (1). The following definition and assumption
represent a sufficient condition for characterizing some allowable operating points (see [16,25]).

Definition 1. Consider the set Ωe given by

Ωe :=
{
ze ∈ Rn, ∃λ ∈ Λ, Aλze + Bλ = 0

}
(4)

where Aλ :=
∑

i∈K λiAi and Bλ :=
∑

i∈K λiBi.

Assumption 3. The desired operating point, denoted as ze in the remainder of the paper and its associated weighting
vector, denoted as λ, belongs to Ωe.

It is worth noting that Ωe does not contain all the acceptable functioning points as mentioned in [25].
For any vector ze in Ωe, we introduce the error variable x(t) := z(t) − ze, where variable z is driven by system (1),

giving rise to the following error dynamics

ẋ(t) = Aσ (tk)x + Bσ (tk),

σ (tk) ∈ K, ∀t ∈ [tk, tk+1), ∀k ∈ N,
(5)

where matrices Bi stand for Aize + Bi, for all i in K. Thus, from Assumption 3, the λ in Λ implies Bλ =
∑

i∈K λiBi = 0.

2.2. Control objectives

Even with a suitable control law, it is worth noting that systems (1) and (5) do not necessarily converge to ze and 0,
respectively, but to a neighborhood of them. This might be understood as a chattering effect around a sliding surface of a
sampled-data sliding mode control law [31]. In the present paper, our objective is to study such systems using a hybrid
dynamical system formulation and analysis as developed in [27]. This is given in the following statement:

Problem 1. Consider system (1) with the periodic time-triggered control formulated in Assumption 1 or the event-
triggered one mentioned in Assumption 2. For each case, the objectives of this paper are

(P1) To build a well-posed hybrid dynamical model.
(P2) To design a suitable control law, called free-matrix min-projection control.
(P3) To ensure that a neighborhood of the desired operating point ze in Ωe is uniformly globally asymptotically stable to

the resulting closed-loop system.
(P4) To provide an optimal parametrization of the control law that minimizes the volume of that neighborhood.

Objective (P1) remains in expressing switched affine systems with a periodic or an aperiodic implementation, based
on the hybrid dynamical system formulation considered in [27]. Contrary to the usual control law employed in the
literature, i.e. Lyapunov matrix-based min projection control (see for instance [7,25,30]) our objective (P2) is to provide
a relaxed structure for the control law inspired from the ones presented in [26,32]. In order to prove the uniform global
asymptotic stability of the system to the neighborhood of the operating point, objective (P3), the non smooth hybrid
invariance principle from [33] will be used to characterize the neighborhood of the operating point thanks to a Lyapunov
function for the hybrid system. Finally, an optimization problem will be formulated to reduce the size of this neighborhood
following the problem presented in [25], fulfilling objective (P4). The novelty of this paper then, relies on the appropriate
combination of these ingredients, considering time- and event-triggered control implementations.

3. Time-triggered control

3.1. Definition of a hybrid dynamical model

Considering (5), it is reasonable to model this system as a hybrid dynamical system, following the formalism given
in [27], wherein continuous-time behavior is gathered in (5) and the discrete-time behavior is given by the jump of the
3
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c
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ontrol input σ from one mode to another one. A timer τ is included in the hybrid model in order to consider the periodic
mplementation of the control law. Therefore, the overall dynamics are represented as follows:

H :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[ẋ
τ̇

σ̇

]
= f (x, τ , σ ) (x, τ , σ ) ∈ C,

[x+

τ+

σ+

]
∈ G(x, τ , σ ) (x, τ , σ ) ∈ D,

(6)

where σ+
⊂ K is the control law to be designed, τ ∈ R is the timer that has to be constrained to live in the interval

[0, T ]. In the previous equation, f and G are (set-valued) maps that capture the continuous time dynamics as well as the
switching logic, which are defined as follow:

f (x, τ , σ ) :=

[Aσ x + Bσ

1
0

]
(x, τ , σ ) ∈ H := Rn

× [0, T ] × K,

G(x, τ , σ ) :=

[ x
0

u(x, τ , σ )

]
(x, τ , σ ) ∈ H,

(7)

where the to-be-designed set valued map u ∈ K referring to the control law, is assumed to be outer semi-continuous.
The so-called ‘‘flow’’ and ‘‘jump’’ sets C and D, respectively, are given by

C := {(x, τ , σ ) : x ∈ Rn, τ ∈ [0, T ], σ ∈ K}, (8)
D := {(x, τ , σ ) : x ∈ Rn, τ = T , σ ∈ K}. (9)

Note that the state of this hybrid model is composed of the state vector x, corresponding to the original switched affine
system; a timer τ that captures the elapsed time since the last control update and, the control input σ selected in the
countable and bounded set K. This model captures the whole dynamics of the sampled-data controlled system (see [29]
for more details). Indeed, the system is allowed to flow only when τ ≤ T , which corresponds to the differential equation
given by the map f (x, τ , σ ) in H. Note that x evolves following the affine dynamic, timer τ increases as the time and the
control input σ remains constant.

Likewise, the system is allowed to jump only when τ = T , which corresponds to an update of the sampled-data
switching control input as described by the jump map G in H. During jumps, vector x remains constant, while timer τ is
reset to 0 and, control input σ is allowed to be modified according to the control law u(x, τ , σ ).

This hybrid model description of H presents good structural properties (see Proposition 1 below) and shows a periodic
character of the jumps. Based on the previous considerations, the following proposition is stated.

Proposition 1. System H(f ,G, C,D) is well-posed.

Proof 1. Knowing from (6)–(9) that u belongs to K, whose cardinal is bounded, it is easy to see that hybrid system
H(f ,G, C,D) verifies the following properties

• C and D are closed sets in H;
• f is a continuous function, thus locally bounded and outer semi-continuous. Moreover, f (x, τ , σ ) is obviously convex

for each (x, τ , σ ) ∈ C, since f (x, τ , σ ) is reduced to a vector of Rn+2;
• G is locally bounded and outer semi-continuous.

Therefore, it satisfies the basic hybrid conditions [27, Assumption 6.5] and following [27, Theorem 6.30], we can
conclude that it is well posed.

Solutions to H(f ,G, C,D) are given on the hybrid time domain: dom(x, τ , σ ) ⊂ R≥0 × N, such that

dom(x, τ , σ ) =

k̄−1⋃
k=0

([tk, tk+1], k), (10)

with k̄ finite (being dom(x, τ , σ ) a compact hybrid time domain) or infinite.
It is readily seen from system (5) that the following expression holds[

ẋ
]

= Γσ

[
x
]

, with Γσ :=

[
Aσ Bσ

]
, (11)
0 1 01,n 0

4
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o that the so-called hybrid arc (hybrid inclusion in [27]) defined in Ik = [tk, tk+1] are given by[
xk+1
1

]
= eΓσ T

[
xk
1

]
. (12)

In the sequel, we will characterize some particular hybrid arcs that reach the origin just after a jump.

efinition 2. Let us introduce the following set of hybrid arcs, defined as follows:

E =

{
(x, τ , σ ) ∈ H | x =

[
I 0

]
eΓσ τ

[
0
1

]}
. (13)

In order to better understand the main motivation to introduce this set, let us note that, if τ = 0, it is straightforward
o see that the corresponding x is equal to zero. Hence, x = [ I 0 ] eΓσ τ

[
0
1

]
describes a solution that crosses the origin

x, τ , σ ) = (0, 0, σ ) and flows from this point.

.2. Definition of the attractor for time-triggered control

When considering system (5) with a T-periodic sampled-data control implementation of the input variable, σ ,
symptotic stability to zero is in general not possible. However, only a practical stabilization of an operating point xe ∈ Ωe
an be achieved. This can be also characterized by the asymptotic stability to a neighborhood of the origin. In this paper, we
ill consider this second formulation, where the attractor set will be defined through an appropriate candidate Lyapunov

unction, which is expressed using a positive definite matrix P to be defined latter on and is given by

V (x, τ , σ ) = max {W (x, τ , σ ) − 1, 0} , (14)

here W is a quadratic function of x, such that

W (x, τ , σ ) :=

[
x
1

]⊤

P(τ , σ )
[
x
1

]
. (15)

The function P is a matrix depending on the timer τ and on the active mode, σ . Several ways of constructing such
timer-dependent functions have already been considered and the readers may refer to [34] to see some other examples.
In this paper, we want to extend the formulation provided in [27] for periodic sampled-data control systems. This
corresponds to the following definition

P(τ , σ ) = e−Γ ⊤
σ τ

[
P h
h⊤ h⊤P−1h

]
e−Γσ τ

= e−Γ ⊤
σ τ

[ P
h⊤

]
P−1 [ P h ] e−Γσ τ ,

(16)

where matrices Γi, i ∈ K has been defined in (11). From the last expression, it is clear that the positive definiteness of
P ensures in the previous expression that P is positive semi-definite and h is a vector that allows to shift the center of
he level set, i.e.

[ x
1
]⊤

P(τ , σ )
[ x
1
]

≥ 0, for any x ∈ R. We are now in position to define the compact attractor, which is
haracterized as follows:

A := {(x, τ , σ ) ∈ C ∪ D V (x, τ , σ ) = 0} . (17)

This attractor refers to the elements of H, that verify W (x, τ , σ ) ≤ 1. It is worth noting that this set is described in an
xtended space composed not only by the system state x, but also by the timer τ and the active mode σ .
It is easy to see that V is continuous in C ∪ D and locally Lipschitz near each point in C\A. Moreover, V is positive

definite with respect to A in C ∪ D and radially unbounded.
Note that the minimum of W with respect to x is not necessarily reached when (x, τ , σ ) is equal to (0, 0, σ ). This is

due to the introduction of parameter h, which allows shifting this minimum to another location. In order to achieve the
control objectives, which means that the solutions are ensured to converge to a neighborhood of the origin, one has to
guarantee that (0, 0, σ ) belongs to A. More generally, regarding the definition of E in (13), it will be required that E is
included in the attractor A, to state that the origin is in the interior of the attractor.

Remark 1. Note that function W is a relatively simple quadratic function, whose center is shifted to the position defined
by vector h. More involved functions can be found in the literature of switched affine systems, as for instance in [35],
where the Lyapunov matrix P is allowed to depend on the active mode. This is not considered in this paper for the sake
of simplicity. Indeed, our objective is more focused on the hybrid framework and on the extension to the design of an
event-triggered controller developed in the next section. ⌟
5
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.3. Design of an efficient switching control law

Once the Objective (P1) is fulfilled by the hybrid dynamical model given in H, (6), we propose, in this section,
novel stabilization based on a relaxed control law, which notably differs from the classical Lyapunov matrix-based
in-projection control developed in [7,25,30], among others. This is stated in the following theorem.

heorem 1. For a given ze in Ωe and a given T ∈ R≥0, assume that matrices 0 ≺ P ∈ Rn×n, h ∈ Rn, Ni = N⊤

i ∈ R(n+1)×(n+1),
for all i ∈ K and parameter 0 < µ < 1 are the solution to the optimization problem

min
P,h,Ni,µ

− log (det(P)), (18)

s.t. P ≻ 0, (19)

Φi(T ) =

⎡⎣Ψi(T ) + Nλ − Ni −

[
0 0
∗ µ

]
µ

[
P
h⊤

]
∗ −µP

⎤⎦ ≺ 0, ∀i ∈ K, (20)

Θλ(T ) =

[
0
1

]⊤

Ψλ(T )
[
0
1

]
⪰ 0, (21)

where λ ∈ Λ is related to ze satisfying Assumption 3 and

Ψi(T ) := eΓ ⊤
i T

[
P h
h⊤ 0

]
eΓiT −

[
P h
h⊤ 0

]
. (22)

Nλ :=

∑
i∈K

λiNi and Ψλ(T ) :=

∑
i∈K

λiΨi(T ).

Then, the following control law, given by

u(x, τ , σ ) ∈ argmin
j∈K

[
x
1

]⊤

Nj

[
x
1

]
(23)

with x := z − ze ensures that map G is locally bounded and outer semi-continuous the following statements hold for hybrid
system (6):

(i) A defined in (17) is UGAS and

(ii) E defined in (13) is included in A. □

Remark 2. The optimization problem given in Theorem 1 is subject to a bilinear matrix inequality, which is known to
be non-convex. However, the problem can be easily avoided by performing a line-search routine for µ ∈ (0, 1) and by
noting that the resulting problem has become linear with respect to the decision variables. Note that this procedure was
already adopted in [25]. ⌟

Proof 2. For a given sampling period, T , let us consider a solution to the optimization described in Theorem 1. That is
parameter µ ∈ (0, 1) and matrices P ≻ 0 ∈ Rn×n, h ∈ Rn, Ni = N⊤

i ∈ R(n+1)×(n+1) with i ∈ K verify problem (18)–(21). In
the sequel, the proof of items (i) and (ii) will be considered successively.

Proof of (i): The proof of item (i) relies on the application of [33, Theorem 1]. First, note that the candidate Lyapunov
function, V (14) is locally Lipschitz, radially unbounded and verifies, by definition V (x, τ , σ ) = 0, for all (x, τ , σ ) in A and
strictly positive otherwise as shown in Eq. (16), where matrix P is assumed to be positive definite.

The next step of the proof is to ensure that the derivative of V along flows outside of A is non positive (or more
precisely in this case, equal to zero). More formally, the objective is to show

⟨∇V (x, τ , σ ), f (x, σ )⟩ ≤ 0, ∀(x, τ , σ ) ∈ C\A. (24)

For any (x, τ , σ ) ∈ C\A, it is clear, from its definition, that V (x, τ , σ ) = W (x, τ , σ ) − 1 and we get that

⟨∇V (x, τ , σ ), f (x, σ )⟩ =

[
x
1

]⊤ (
τ̇ ∂

∂τ
P(τ , σ ) + σ̇ ∂

∂σ
P(τ , σ )

) [
x
1

]
+ 2

[
x
1

]⊤

P(τ , σ )
[
ẋ
0

]
=

[
x
1

]⊤ (
∂
∂τ

P(τ , σ ) + He (P(τ , σ )Γσ )
) [

x
1

]
= 0,

which is guaranteed by the construction of P in (16), and ensures condition (24). Note the second stability condition
from [33, Theorem 1], that is

∆V (x, τ , σ ) := max V (g) − V (x, τ , σ ) < 0, ∀(x, τ , σ ) ∈ D \ A. (25)

g∈G(x,τ ,σ )∩(C∪D)

6
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Again, consider any (x, τ , σ ) in D\A, such that V (x, τ , σ ) = W (x, τ , σ ) − 1 and any g in G(x, τ , σ ) ∩ (C ∪ D). Since
x, τ , σ ) is in D\A, then τ = T . Moreover, since g is in G(x, τ , σ )∩ (C ∪D), then g = (x, 0, σ+) where σ+ belongs to u(x).
f (x, 0, σ+) belongs to A, then V (x, 0, σ+) − V (x, T , σ ) = −V (x, T , σ ) < 0. Otherwise we have

V (x, 0, σ+) − V (x, T , σ ) = W (x+, 0, σ+) − W (x, T , σ )

=

[
x
1

]⊤ (
P(0, σ+) − P(T , σ )

) [
x
1

]
=

[
x
1

]⊤ ([
P h
h⊤ h⊤P−1h

]
− e−Γ ⊤

σ T
[
P h
h⊤ h⊤P−1h

]
e−Γσ T

)[
x
1

]
=

[
x
1

]⊤ ([
P h
h⊤ 0

]
− e−Γ ⊤

σ T
[
P h
h⊤ 0

]
e−Γσ T

)[
x
1

]
.

This last simplification comes from the fact that the last diagonal component of e−Γσ T is 1. Therefore, we can express
he previous equation thanks to the matrices Ψi’s defined in (22) as follows

V (x, 0, σ+) − V (x, T , σ ) =

(
e−Γσ T

[
x
1

])⊤

Ψσ (T )
(
e−Γσ T

[
x
1

])
. (26)

For the sake of simplicity, we will use the following notation along the proof,[
χσ

1

]
= e−Γσ T

[
x
1

]
. (27)

Notice that, in this definition, vector χσ depends on the state x, on the sampling period T and on the active mode σ .
his dependence is not specified in this notation to avoid heavy notations. In order to better emphasize the link between
and χσ stated in (27), let us rewrite this statement in the usual discrete-time framework. In this equation, we would
rite x = x(k + 1) and χσ = x(k). The dynamics leading to x(k + 1) from x(k) is driven by

[
x(k+1)

1

]
= eΓσ T

[
x(k)
1

]
, which

esult from the integration of the differential (flow) equation over a sampling interval of length T .
We also note that this new notation is of high importance since it corresponds to the state of the switched affine

ystem just after the jump. Hence, according to (12), this can be formalized as follows

σ ∈ argmin
j∈K

[
χσ

1

]⊤

Nj

[
χσ

1

]
.

This implies that inequalities[
χσ

1

]⊤

(Nj − Nσ )
[
χσ

1

]
≥ 0,

old for any j ∈ K. Therefore, for any convex combination, and more particularly for λ in Λ, we have

Σσ (x, T , σ ) :=

[
χσ

1

]⊤

(Nλ − Nσ )
[
χσ

1

]
≥ 0. (28)

The previous expression allows to introduce the condition that σ is the active node. Let us now specify that (x, T , σ )
s in D\A. From the definition of A, this means that V (x, T , σ ) > 0 and

0 < W (x, T , σ ) − 1 =

[
x
1

]⊤

P(T , σ )
[
x
1

]
− 1

=

[
χσ

1

]⊤ [
P h
h⊤ h⊤P−1h − 1

][
χσ

1

]
,

here we have employed (27) to enforce the use of notation χσ . Therefore, (25) is verified, if we can prove that inequality[
χσ

1

]⊤

Ψσ (T )
[
χσ

1

]
< 0

holds for all (x, τ , σ ) in D\A such that[
χσ

1

]⊤ [
P h
h⊤ h⊤P−1h − 1

][
χσ

1

]
≥ 0

and
[
χσ

]⊤

(Nλ − Nσ )

[
χσ

]⊤

≥ 0,
1 1

7
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here we recall that vector χσ , defined in (27), depends explicitly on (x, τ , σ ). Using two successive S-procedures, this
roblem is recast into the existence of a parameter µ > 0, such that,

Ψi(T ) + Nλ − Ni + µ

[
P h
h⊤ h⊤P−1h − 1

]
≺ 0, i ∈ K. (29)

By noting that matrix
[ P h
h⊤ h⊤P−1h

]
can be rewritten as

[ P
h⊤

]
P−1

[ P
h⊤

]⊤
, such that the application of the Schur

omplement to this term leads to condition (20). It can then, be concluded that if (20) is satisfied, then condition (25) is
lso verified.
In order to complete the proof, the assumption of [33, Theorem 1], consisting in the satisfaction of G(A ∩ D) ⊂ A

as to be included. This condition consists in proving that A is invariant. Let us first note that in the proof of (24), we
rove that V is constant in C ∩A. Then, let us consider (x, τ , σ ) in D ∩A. We have seen in the previous calculations that
nequality (20) yields(

e−Γσ T
[
x
1

])⊤ (
Ψi(T ) + Nλ − Ni + µ

[
P h
h⊤ h⊤P−1h − 1

])(
e−Γσ T

[
x
1

])
= W (x, 0, σ+) − W (x, T , σ ) + µ(W (x, T , σ ) − 1) + Σσ < 0,

here Σσ is defined in (28) and is a positive quantity. Hence, the previous expression can be rewritten as follows

W (x, 0, σ+) − 1 < (1 − µ)(W (x, T , σ ) − 1) − Σσ ≤ (1 − µ)(W (x, T , σ ) − 1).

Therefore, since µ ∈ (0, 1) and (x, T , σ ) ∈ A, ensures that W (x, 0, σ+) − 1 is negative, such that, V (x, 0, σ+) is zero,
hich was to be proven. The last step of the proof is to ensure that no complete solution, that are not in A, keeps constant,
his means that there is no complete solution such that

V (x(t, j), τ (t, j), σ (t, j)) = V (x(0, 0), τ (0, 0), σ (0, 0)) ̸= 0,

or all (t, j) ∈ dom(x, τ , σ ). This is ensured by the facts that condition (20) is a strict inequality and that jumps are forced
o occurs after T ordinary time. Therefore, by application of [33, Theorem 1], attractor A is UGAS for hybrid system H.

Proof of (ii): The objective here is to prove that the particular solutions in E are in the interior of A. Recall that E
ontains the solutions that reach the origin (in x) right after a jump. Formally, this means that inequality(

eΓσ τ

[
0
1

])⊤

P(τ , σ )
(
eΓσ τ

[
0
1

])
=

[
0
1

]⊤

P(0, σ )
[
0
1

]
= h⊤P−1h ≤ 1,

olds for any (τ , σ ) in [0, T ] × K. To proceed with this proof, let us compute the linear combination of (29) (which is
quivalent to (20)), weighted by λ. This yields∑

i∈K

λi

(
Ψi(T ) + Nλ − Ni + µ

[
P h
h⊤ h⊤P−1h − 1

])
≺ 0.

Using the condition
∑

i∈K λi = 1 and the fact that
∑

i∈K λiNi = Nλ, the previous inequality leads to∑
i∈K

λiΨi(T ) + µ

[
P h
h⊤ h⊤P−1h − 1

]
≺ 0. (30)

Pre- and post-multiplying this inequality by the vector
[
0
1

]⊤ and its transpose, respectively provides[
0
1

]⊤
∑
i∈K

λiΨi(T )
[
0
1

]
+ µ(h⊤P−1h − 1) < 0.

From condition (21), the first term of the previous inequality is positive. This necessarily implies that h⊤P−1h − 1 is
egative, which was to be demonstrated.

The hybrid dynamical model given in (6)–(7) together with the solution of the optimization problem given in Theorem 1
atisfy all items of Problem 1.
The previous theorem presents a constructive stabilization result for sampled-data switched affine systems, which

epends explicitly on the value of the sampling period T . Then, the influence of T on the feasibility of (20)–(21) needs to
e studied carefully. To do so, the two following propositions are stated to better understand the underlying necessary
onditions for their feasibility.

roposition 2. For a given T , a necessary condition for the feasibility of the conditions of Theorem 1 is that there exists a
eighting vector λ ∈ Λ such that matrix

∑
i∈K λieAiT is Schur stable.

Proof 3. Following the procedure of Proposition 1 in [26], multiplying inequality (30) by matrix
[

I
0

]
from the right side

and its transpose from the left, leads to
∑

i∈K λieA
⊤
i TPeAiT − (1− µ)P < 0. Since µ belongs to (0, 1), a convexity argument

ensures matrix
∑

λ eAiT must be Schur stable.
i∈K i

8
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roposition 3. If there exist a weighting vector λ ∈ Λ such that Aλ =
∑

i∈K λiAi is Hurwitz stable, then there exists a
ufficiently small sampling period T such that the conditions of Theorem 1 are verified. Moreover, attractor A tends to {−A−1

λ Bλ}

s T tends to zero.

roof 4. Consider again inequality (30) in the situation when T is sufficiently small. Performing the Taylor series of eAiT

s T tends to 0, and pre-(and post-) multiplying the result by
[
P−1

−P−1h
0 1

]⊤

(by its transpose), we obtain[
AλP−1

+ P−1A⊤

λ +
µ

T P
−1

+ O(T ) AλP−1h + Bλ + O(T )
∗ −

µ

T

]
≺ 0,

here notation O(T ) stands for a quantity of order T as T tends to 0. Therefore, if there exists a linear combination λ ∈ Λ

uch that matrix Aλ is Hurwitz, then there exist a matrix P = (βW )−1, with β > 0, and a sufficiently small µ̃ = µ/T such
hat, for a small value of T ,[

β(AλW + WA⊤

λ + µ̃W ) + O(T ) O(T )
∗ −µ̃

]
≺ 0,

ecause AλW +WA⊤

λ + µ̃W ≺ 0 and h = −(AλP−1)−1Bλ. Therefore, for a given parameter β > 0, there exists a sufficiently
small value of T such that the necessary conditions given in Theorem 1 are satisfied. Moreover, when T tends to zero,
it is possible to select a parameter β , which tends to zero as well, which implies, from its definition, that the Lyapunov
matrix, P , becomes large and consequently, that attractor A shrinks to singleton {P−1h} = {−A−1

λ Bλ}.

Remark 3. Theorem 1 and the one presented in [26, Theorem 1] address the same problem, but the main difference is
that Theorem 1 additionally characterizes the inter-switching dynamics. Even though they provide equivalent stabilization
conditions, Theorem 1 is, indeed, dedicated to hybrid dynamical model while results in [26, Theorem 1] only focus on the
discrete-time one. ⌟

Remark 4. The optimization problem formulated in Theorem 1 consists in the minimization of a characteristic of attractor
A. Indeed, maximizing log(det(P)) refers to the minimization of the volume of the ellipse defined by the positive definite
matrix P . ⌟

4. Event-triggered control

4.1. Definition of a new hybrid dynamical model

In this section, we want to relax the constraint on the periodic update of the switching control law, by considering
Assumption 2. This relaxation allows that the trajectories reach a region around a given operating point ze ∈ Ωe with
less control updates than using the periodic-switching control considered in Assumption 1. To do so, let us represent the
overall dynamics as follows:

H̃ :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[ẋ
τ̇

σ̇

]
= f (x, τ , σ ) (x, τ , σ ) ∈ C̃,

[x+

τ+

σ+

]
∈ G(x, τ , σ ) (x, τ , σ ) ∈ D̃,

(31)

where we use the same three components and the same maps f and G to express the state variables as in the periodic
time-triggered implementation considered in Section 3.1. However, in order to enforce the event-triggered control, the
definition of the jump and flow sets C̃ and D̃ have to be modified. Let us first recall maps f and G that capture the new
features of the system, as well as, the switching logic. For a sufficiently large positive real TM , they are now defined as
follows:

f (x, τ , σ ) :=

[Aσ x + Bσ

1
0

]
(x, τ , σ ) ∈ H̃ := Rn

× [0, TM ] × K,

G(x, τ , σ ) :=

[ x
0

u(x, τ , σ )

]
(x, τ , σ ) ∈ H̃,

(32)

where the to-be-designed set valued map u ∈ K referring to the control law, is assumed to be outer semi-continuous.
The timer presents the same role as in the previous section, i.e. keeping track of the elapsed time since the last jump.

Timer τ is now enforced to lie in the interval [0, T ], so that T can be seen as a maximum dwell time parameter, which
M M

9
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Fig. 1. Illustration in the plan τ , φ(x, τ , σ ) of the jump set, represented by the blue and green lines and of the flow set by the yellow and red areas.
The figure also shows two potential solutions to hybrid system H̃(f ,G, C̃, D̃), starting from a same point, at τ = 0 and φ > 0. The solid and dashed
ines represent the trajectories during flows and jumps, respectively. Moreover, the gray area represents the region where solutions are not allowed
o evolve in.

an be selected arbitrarily. Likewise, a minimum dwell time parameter Tm ∈ [0, TM ] has now to be included. The new
low and jump sets C̃ and D̃, respectively, are now given by

C̃ := (CTm ∪ Ce) ∩ CTM (33)

D̃ := (DTm ∩ De) ∪ DTM , (34)

here

Minimum dwell time
{
CTm := {(x, τ , σ ) ∈ H̃ : τ ≤ Tm}

DTm := {(x, τ , σ ) ∈ H̃ : τ ≥ Tm},

Maximum dwell time
{
CTM := {(x, τ , σ ) ∈ H̃ : τ ≤ TM}

DTM := {(x, τ , σ ) ∈ H̃ : τ = TM},

Event-triggering rule
{
Ce :=

{
(x, τ , σ ) ∈ H̃, τ ∈ [Tm, TM ], φ(x, τ , σ ) ≤ 0

}
,

De :=
{
(x, τ , σ ) ∈ H̃, τ ∈ [Tm, TM ], φ(x, τ , σ ) = 0

}
,

here φ : H̃ → R is the triggering function, which allows the controller to decide whether or not an event occurs. For the
ake of consistency, the definition of this function will be given in the sequel. The following constraint on φ is imposed

φ(x, Tm, σ ) ≤ 0, ∀(x, σ ) ∈ Rn
× K. (35)

We also note that some elements of H̃ are disregarded. Indeed, the element of
{
(x, τ , σ ) ∈ H̃, τ ∈ [Tm, TM ],

φ(x, τ , σ ) > 0} are not relevant to consider in this study.
Sets C̃ and D̃ are subspaces of H̃. The system has to be understood as follows. According to (33), the system is

onstrained to flow

• when the timer is lower than the minimum dwell time Tm, as depicted in Fig. 1 by the yellow area.
• when the timer is greater than Tm, and both the triggering condition φ(x, τ , σ ) ≤ 0 remains satisfied and the timer

τ remains lower than the maximum dwell time TM , as depicted in Fig. 1 by the red area.

Reversely, according to (34), the system is constrained to jump

• when the timer is greater than the minimum dwell time Tm and when φ(x, τ , σ ) = 0 becomes true, i.e. the bold
blue line in Fig. 1.

• when the timer becomes equal to the maximum dwell time TM , while the triggering condition φ(x, τ , σ ) ≤ 0 has
not been violated, i.e. the bold green line in Fig. 1.

Fig. 1 also illustrates that condition φ(x, Tm, σ ) < 0 ensures that maximum solutions are complete, since the solutions
o the system have to enter in the red area and have then to enter in the jump set.

As for the periodic time-triggered control case, one has first to prove the well-posedness of this new hybrid dynamical
ystem. This is done in the next proposition.

roposition 4. System H̃(f ,G, C̃, D̃) is well posed.

The proof is similar to the one of Proposition 1 and is therefore omitted.
10
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w

The solutions of H̃ are given in dom(x, τ , σ ) provided in (10). As for the time-triggered control implementation, let us
now define the set of the particular arcs starting in the origin for H̃, which are similar to E for H.

Definition 3. Let us introduce the following set of hybrid arcs, defined as follows:

Ẽ =

{[
x
τ
σ

]
∈ Rn

× [0, Tm] × K | x = [ I 0 ] eΓσ τ
[
0
1

]}
. (36)

The set has the same definition as in the periodic case. The only difference is that it only contains the trajectories of the
system that are located at x = 0 after a jump and that flow until the minimum dwell time Tm is reached. Of course, thanks
to the event-triggered control law, these trajectories may continue flowing after the minimum dwell time. However, this
set is only defined to understand that the trajectories that starts at x = 0 after a jump stay close enough to the operating
point and to the attractor defined in the next section.

4.2. Definition of the attractor for event-triggered control

The attractor related to system (5) with an aperiodic sampled-data control implementation, is defined with the same
candidate Lyapunov function as for the periodic time-triggered case, i.e.

V (x, τ , σ ) = max {W (x, τ , σ ) − 1, 0} , (37)

here W is given in (15) and where we have also kept the same definition for P(τ , σ ) introduced in (16). We recall that
matrices Γi have been given in (11) and that P ≻ 0, which is directly deduced from the definite-positiveness of P . In the
sequel, the new compact attractor is

Ã :=
{
(x, τ , σ ) ∈ C̃ ∪ D̃, V (x, τ , σ ) = 0

}
. (38)

In other words, this attractor is the subset of H̃, where the solutions to H̃ satisfy W (x, τ , σ ) ≤ 1 and τ < TM . We are
now in position to state the next theorem.

Theorem 2. For a given ze ∈ Ωe and given Tm, TM ∈ R, such that, 0 < Tm < TM , assume that matrices 0 ≺ P ∈ Rn×n,
M = M⊤

∈ R(n+1)×(n+1), h ∈ Rn, Ni = N⊤

i ∈ R(n+1)×(n+1) and parameters µ ∈ (0, 1) are the solution to the optimization
problem

min
P,M,h,Ni,µ

− log (det(P)), (39)

s.t. P ≻ 0, M ≻ 0, Θλ(Tm) ⪰ 0, (40)⎡⎣Ψi(Tm) + (Nλ − Ni) + eΓ ⊤
i TmMeΓiTm −

[
0 0
∗ µ

]
µ

[
P
h⊤

]
∗ −µP

⎤⎦ ≺ 0,

∀i ∈ K, (41)

where Ψi(Tm) and Θλ(Tm) are given in (22) and (21), respectively, with Tm replacing T and with λ ∈ Λ related to ze satisfying
Assumption 3. Then, the following control law, given by

u(x, τ , σ ) ∈ argmin
j∈K

[
x
1

]⊤

Nj

[
x
1

]
(42)

with x := z − ze together with the event-triggering rule

φ(x, τ , σ ) =

[
x
1

]⊤ (
P(0, σ ) − eΓ ⊤

σ (Tm−τ )(P(0, σ ) + M)eΓσ (Tm−τ )
)[

x
1

]
(43)

ensures that map G is locally bounded and outer semi-continuous and the following statements hold for hybrid system (31)–(32):

(i) attractor Ã defined in (38) is UGAS and

(ii) set Ẽ defined in (36) is included in attractor Ã. □

Proof 5. Consider the solution of the optimization described in Theorem 2, for a given minimum dwell time, Tm and a
maximum dwell time, TM , which is selected arbitrarily with the only constraint that TM > Tm. Then, we proceed with the
proof of items (i) and (ii).

Proof of (i): The proof of item (i) relies on the application of [33, Theorem 1]. It is easy to see that V presents, as in
the previous section, the properties of continuity in C̃ ∪ D̃, locally Lipschitz near each point in C̃\Ã, positive definiteness
with respect to Ã in C̃ ∪ D̃ and radially unbounded.
11
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Now, the next step of the proof is to ensure

⟨∇V (x, τ , σ ), f (x, σ )⟩ ≤ 0, ∀(x, τ , σ ) ∈ C̃\Ã. (44)

From the definition of the Lyapunov function given in (37), we get

⟨∇V (x, τ , σ ), f (x, τ , σ )⟩

=

[
x
1

]⊤ (
τ̇ ∂

∂τ
P(τ , σ ) + σ̇ ∂

∂σ
P(τ , σ )

) [
x
1

]
+ 2

[
x
1

]⊤

P(τ , σ )
[
ẋ
0

]
=

[
x
1

]⊤

(1 − τ̇ )He (P(τ , σ )Γσ )

[
x
1

]
= 0,

(45)

hich is guaranteed by the positive definiteness of V in C̃\Ã. The next step consists in establishing the following condition
uring jumps

∆V (x, τ , σ ) := max
g̃∈G(x,τ ,σ )∩(C̃∪D̃)

V (g̃) − V (x, τ , σ ) < 0, ∀(x, τ , σ ) ∈ D̃ \ Ã. (46)

Let us first note that, if the first term of the right hand side is 0 (i.e. g̃ ∈ Ã), then, the negativity of the previous
quation is trivially satisfied. If not, we have, from the definition of V in (37),

∆V (x, τ , σ ) = W (x+, 0, σ+) − W (x, T , σ )

=

[
x
1

]⊤ (
P(0, σ ) − e−Γ ⊤

σ τP(0, σ )e−Γσ τ
)[

x
1

]
=

[
x
1

]⊤

e−Γ ⊤
σ τ

(
eΓ ⊤

σ Tm (P(0, σ ) + M) eΓσ Tm − P(0, σ )
)
e−Γσ τ

[
x
1

]
+

[
x
1

]⊤ (
P(0, σ ) − eΓ ⊤

σ (Tm−τ )(P(0, σ ) + M)eΓσ (Tm−τ )
)[

x
1

]
.

Recalling the procedure presented in the proof of the periodic time-triggered control case in Eq. (26) and identifying
the event-triggering rule φ given in (43), the previous expression can be rewritten as follows

∆V (x, τ , σ ) =

[
x
1

]⊤

e−Γ ⊤
σ τ

(
Ψσ (Tm) + eΓ ⊤

σ TmMeΓσ Tm
)
e−Γσ τ

[
x
1

]
+ φ(x, τ , σ )

where matrix Ψσ (Tm) is given in (22) with T = Tm. Following the same techniques as for the periodic time-triggered
control case, we note that

∆V (x, τ , σ ) =

[
x
1

]⊤

e−Γ ⊤
σ τ Φ̄σ (Tm)e−Γσ τ

[
x
1

]
+ φ(x, τ , σ )

−

[
x
1

]⊤

e−Γ ⊤
σ τ (Nλ − Nσ ) e−Γσ τ

[
x
1

]
− µ

[
x
1

]⊤

e−Γ ⊤
σ τ

[
P h
h⊤ h⊤P−1h − 1

]
e−Γσ τ

[
x
1

]
.

where we have introduced the notation

Φ̄i(Tm) = Ψσ (T ) + eΓ ⊤
i TmMeΓiTm + Nλ − Ni + µ

[
P h
h⊤ h⊤P−1h − 1

]
, ∀i ∈ K.

One may recognize, in the second line of the previous expression of ∆V , the expression of Σσ given in (28), and the
definition of the Lyapunov function in the third line. This brings us to rewrite the previous expression as follows,

∆V (x, τ , σ ) =

[
x
1

]⊤

e−Γ ⊤
σ τ Φ̄σ (Tm)e−Γσ τ

[
x
1

]
− Σσ (x, τ , σ ) − µ (W (x, τ , σ ) − 1) + φ(x, τ , σ ).

Hence, we are now ready to ensure the negative definiteness of ∆V . Using a Schur complement to (41), we can guaranty
that Φ̄σ (Tm) ≺ 0 holds for any σ ∈ K. Consequently, the first term of the previous expression is negative definite. The
second term is negative because of the control law and the third term is also negative since, as for the periodic time-
triggered case, this term refers to the assumption that the state, just before a jump occurs, is outside of the attractor. The
previous discussion means that there exists a sufficiently small ε > 0 such that

∆V (x, τ , σ ) ≤ −ε

 x
τ
σ

2
+ φ(x, τ , σ ). (47)

Note that this last inequality is made possible since τ is bounded by TM . According to the definition of the jump set
in (34), two cases may occur.
12
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ase I (x, τ , σ ) is in DTm ∩ De. This means that τ ≥ Tm and φ(x, τ , σ ) = 0. Then, it is clear that ∆V (x, τ , σ ) ≤ −ε

 x
τ
σ

2
.

ase II (x, τ , σ ) is in DTM . This means that τ = TM and φ(x, τ , σ ) ≤ 0, then (47) holds.

Now, we need to prove the invariance of Ã for (x, τ , σ ) ∈ H̃. From (45), we have ⟨∇Ṽ (x, τ , σ ), f̃ (x, τ , σ )⟩ = 0, for all
x, τ , σ ) in (C̃ ∩ Ã) ⊂ Ã, which ensures that the solution in the attractor remains in it during flows.

We now need to prove that the solution to H̃ that enters into Ã remains in the attractor during jumps, i.e. G(D̃∩Ã) ⊂ Ã.
o do so, let us note that condition (20) can be rewritten as follows

W (x, 0, σ+) = W (x, τ , σ ) + ∆W (x, τ , σ )

= W (x, τ , σ ) +

[
x
1

]⊤

e−Γ ⊤
σ τΦσ (Tm)e−Γσ τ

[
x
1

]
− Σσ (x, τ , σ ) − µ (W (x, τ , σ ) − 1) + φ(x, τ , σ )

≤ W (x, τ , σ ) − µ(W (x, τ , σ ) − 1)
= (1 − µ)(W (x, τ , σ ) − 1) + 1.

Then, for any (x, τ , σ ) ∈ Ã, for which we have W (x, τ , σ ) − 1 < 0, the assumption µ ∈ (0, 1) that guaranties
(x, 0, σ+) < 1 holds. From its definition, this also means that V (x, 0, σ+) = 0. In other words, the previous statement

llows us stating which was to be demonstrated, i.e.

∆V (x, τ , σ ) = 0, ∀(x, τ , σ ) ∈ D̃ ∩ Ã.

As for the periodic time-triggered case, the last step of the proof is to ensure that no complete solution, that are not
in A, keeps constant. This is ensured by the fact that the solution will eventually jump after, at most, TM unit of ordinary
time. Since, thanks to the previous developments, we have shown that at each jump, the increment of the Lyapunov
function is strictly decreasing.

Proof of (ii): The proof of Ẽ ⊂ Ã follows from the proof of (ii) in Proof 2. Recall that the set Ẽ is defined by all solutions
hat start at x = 0 just after a jump and evolve in τ ∈ [0, Tm]. It is easy to see that if matrix inequalities (41) are satisfied,
hen the particular solutions in Ẽ are in Ã, as done in the proof of Theorem 1.

As noted in Remark 2, the non-convex optimization problem (39)–(41) is transformed in convex, pre-selecting
arameter µ by a line-search routine algorithm.
A similar statement as the one in Proposition 2 for Theorem 1 can be formulated for Theorem 2, where a necessary

ondition for the feasibility of (41) is the existence of weighting parameters λi ≥ 0 such that
∑

i∈K λi = 1 and
∑

i∈K λieAiTm
s Schur stable. Moreover, if there also exist λi ≥ 0 such that

∑
i∈K λi = 1 and

∑
i∈K λiAi is Hurwitz stable, then the

revious matrix inequalities will be feasible for a sufficiently small Tm. The proofs of these two statements are omitted
ecause there are direct from the ones of Propositions 2 and 3.

. Numerical validation

In this section, we take the system driven by (1) composed by three functioning modes:

A1 =

[
0 0.5
0 −1

]
, B1 =

[
1
0.5

]
,

A2 =

[
0.1 0
−1 −1

]
, B2 =

[
−1

−0.5

]
,

A3 =

[
0 1

−1 0

]
, B3 =

[
0
2

]
.

(48)

he desired operating point is ze = [0.1 0.2]T associated with λ = [0.40 0.47 0.13] belongs to Ωe. Note that the each
unctioning mode is instable.

We consider the following switching times for the time-triggered control (2) as well as the minimum dwell times for
he event-triggered control (3): T = Tm = 0.25, 0.5 and 1s. The maximum dwell-time is arbitrarily selected as TM = 100s.
s mentioned in Remark 2, numerical results have been obtained on MATLAB by performing a line-search algorithm on
arameter µ ∈ (0, 1), and then solving the resulting convex optimization using the CVX sdp solver [36].
We first stress that the optimal solutions obtained from both Theorems 1 and 2 are the same given in Table 1, even

hough the conditions are different, because of matrix M in the event-triggered case. Looking at the numerical values,
atrix M is of order 10−10 in all cases. Therefore, comparatively to the values of P given in Table 1, its influence can be
eglected. This can be expected from the conditions since the only constraint on M is to be positive definite.
13
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5

p
d

Table 1
Numerical results for the time-triggered control and for the event-triggered control with T = Tm in the hybrid dynamical
formulation (6)–(7) and (31)–(32), respectively.

µ det(P)
1
2 P h

T = 0.1 0.03 1.03
[
1.5528 0.6818
0.6818 0.9055

] [
−0.1848
−0.0723

]
T = 0.6 0.09 11.21

[
0.1600 0.0473
0.0473 0.0637

] [
−0.004
−0.002

]
T = 1 0.09 20.56

[
−0.0010 −0.0001
−0.0001 0.0014

] [
−0.0043
−0.0016

]

Fig. 2. Simulation results of switched affine system (1), (48) with the periodic time-triggered control for three different values of T , from top to
bottom. From left to right, the figure shows the evolution of the state variables (x1, x2), the control input σ and the timer τ .

5.1. Comments on the periodic time-triggered control

On the one hand, some simulations are performed when the periodic time-triggered control law given in (2) is applied
to system (1) via the hybrid dynamical system (6)–(7), with the parameters computed from the optimization problem
given in Theorem 1. Fig. 2 shows the time evolution of the state x, the control input σ and the timer τ . Note in the second
column of Fig. 2, that the reached operating point and its associated weighting vector are different to the pair (ze, λ).
Indeed, the system converges asymptotically to a neighborhood of the origin, evolving in the hybrid time domain (10), as
hybrid arcs. The last column shows timer τ bounded by T , driving to periodic-time switching.

Fig. 3, shows, in the first column, the convergence of the solutions to A, which is illustrated through the graph of
W (x, τ , σ ). Indeed, the solutions enter into A when W (x, τ , σ ) is lower than 1. In the second column, we highlight more
insights on the attractor. To do so, let us introduce the following function F from [0, T ] × K to Rn, which represents the
boundary of the attractor A projected on the state space x. More formally, let us define F as follows

F(τ , σ ) := {x ∈ Rn, W (x, τ , σ ) = 1}, ∀(τ , σ ) ∈ [0, T ] × K.

It is worth noting that the graph of F(τ , σ ) draws, for each value of τ and σ , an ellipsoid. It can be seen that the
increasing of T implies an expected increase of the volume of F(τ , σ ) independently on τ and σ . This increase of A is
also appreciated in Table 1, which provides an estimation of the volume of the ellipse drawn by the attractor when τ = 0
(and independent of σ ), which is proportional to det(P)−

1
2 . It is noted as the origin remains in the interior of A.

.2. Comments on the aperiodic event-triggered control

The same simulation setup has been considered in the aperiodic event-triggered case. Similarly to the time-triggered
eriodic case, Fig. 4 shows the state evolutions, when the event-triggered control (3) is applied to system (1), via the hybrid
ynamical system (31)–(32) with three a priori selected minimum dwell times T = 0.1, 0.6 and 1. It is appreciated as
m

14
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b

Fig. 3. Simulation results of switched affine system (1), (48) with the periodic time-triggered control for three different values of T , from top to
bottom. From left to right, the figure shows the function W (x, τ , σ ) (in a logarithmic scale), with respect to time and the second column shows the
trajectories of the state space x and the projection of A in x, i.e. F(τ , σ ).

Fig. 4. Simulation results of switched affine system (1), (48) with the aperiodic time-triggered control for three different values of Tm , from top to
ottom. From left to right, the figure shows the evolution of the state variables (x1, x2), the control input σ and the timer τ .

the timer, τ , generates an aperiodic switching rule between the minimum dwell time Tm and and the maximum dwell
time TM selected arbitrarily as 100.

Comparing the simulation results of Fig. 2 with respect to Fig. 4, which were performed for the same initial conditions,
we first remark that the solutions to the systems also converge in a neighborhood of the origin. However, one can also
note that the transient period is larger in the event-triggered case compared to the time-triggered one. We can see in the
last column of the figure that the timer reaches a periodic behavior once the solutions are close to the operating point.
Before that, we can see in these simulations that the solutions to the event-triggered controller are able to flow during
15
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b
t
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o

Fig. 5. Simulation results of switched affine system (1), (48) with the aperiodic time-triggered control for three different values of Tm , from top to
ottom. From left to right, the figure shows the function W (x, τ , σ ) (in a logarithmic scale), with respect to time and the second column shows the
rajectories of the state space x and the projection of Ã in x.

notable while (up to 8 units of ordinary time). Therefore, the event-triggered control law is able to reduce the number
f control updates compared to the periodic time-triggered case.
Fig. 5 depicts the evolution of W (x, τ , σ ) (first column) and the projection of Ã into the space x (in the second column).

While the optimization problem presented in both theorems delivers the same values, it is emphasized the fact that the
timer reaches larger values than the minimum dwell time. This leads to notable differences when plotting the projection
of attractor Ã (see Fig. 5). Indeed the graphs of F(τ , σ ) for each values of the minimum dwell time Tm presents larger
variations compared to the periodic case. However, since the simulations show that the timer seems to converge to a
periodic behavior of period Tm, the projections of the attractor in the steady state in both time- and event-triggered
converge to the same region.

5.3. Fair comparison between both approaches

When comparing the solutions to the time- and event-triggered controller, it seems that the best performance is
achieved by the periodic time-triggered. Indeed, for this set of simulations, the transient of the time-triggered case are
shorter than the ones of the event-triggered case, when comparing the solutions with T = Tm. However, this comparison
is not really fair, since in the periodic solutions requires more control actions than the aperiodic one.

In order to provide a more accurate comparison, let us focus on the solution of the event-triggered case with Tm =

0.6. The triggering rule generates 19 events corresponding to a change of mode over a simulation of 30s. Therefore,
an equivalent periodic control for this simulation would require to select T = 30/19, for which no solution to the
optimization problem of Theorem 1 can be found. However, a solution has been obtained for a slightly lower value T = 1.5.
Fig. 6 now illustrates a fair comparison where the solution to the periodic time-triggered controller with T = 0.6 and 1.5
and to the event-triggered controller with Tm = 0.6 are presented. Indeed, the two simulations at the bottom of the figure
have the same number of control updates. Even though the transient of the periodic solution is shorter than the aperiodic
one, the solution to the periodic case has a larger chattering around the operating point compared to the aperiodic case.
Moreover, the guarantees of the periodic controller with T = 1.5 are much worse than the aperiodic one as shown in
Fig. 7, where the projection of the attractor is way much larger than the aperiodic case. Therefore, in light of the previous
comments, the event-triggering controller has the merit to reduce the number of control updates while keeping the same
guarantees on the size of the attractor, but at the price of reducing the performance during the transient phase.
16
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Fig. 6. Simulations presenting the evolution of the state x (left), the selected mode σ (middle) and the timer τ (right) for two time-triggered
ontroller (TTC) with T = 0.6 and 1.5 and for the event-triggered case (ETC) with Tm = 0.6.

Fig. 7. Simulations presenting the evolution of W (x, τ , σ ) (left) and the solutions to the system in the phase plan (right) for two time-triggered
controller (TTC) with T = 0.6 and 1.5 and for the event-triggered case (ETC) with Tm = 0.6.

. Conclusions and perspectives

This work presents a switching controller for affine systems, defined by continuous-time and discrete-time dynamics,
hen the input signal is periodically or aperiodically updated. The main result presented here provides a simple control
rchitecture, which is not structured by the system matrices nor the Lyapunov matrix. It is proven UGAS of a compact
ttractor defined in the hybrid state space (x, τ , σ ) and the practical asymptotic stability of the operating point ze = z−x.
deep discussions has been proposed in the numerical application sections and shows the advantages and drawbacks of
ach control strategies. In future work, we aim at exploiting this framework to ensure the robustness of the system with
espect to parameter variations and to jitter.
17
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